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Abstract 

The probability density of phase angles for structures 
with one or more atoms on known positions [Sim 
(1959). A cta Cryst. 12, 813-818] is expressed in terms 
of normalized difference-structure factors, and used to 
calculate standard deviations of phases and expectation 
values for amplitudes (IE~ I) of the normalized 
difference-structure factors. Numerical results are 
tabulated for various values of I Ell and I E 21, i.e. the 
minimum and maximum I Erl value a given reflection 
can have. Applications to the DIRDIF procedures [van 
den Hark, Prick & Beurskens (1976). Acta Cryst. A32, 
816-821] are described. New applications are the cal- 
culation of the a priori probability density function for 
levi values, and a statistical rriethod for the detection 
of a centre of symmetry in the remaining part of the 
structure. For the statistical method, a centricity 
parameter, X c, which is unity for centric and zero for 
acentric distributions, is defined; for the difference 
structure, X c is calculated by an iterative procedure, 
extrapolating towards zero contribution of the known 
part of the structure. Numerical results for 13 test 
structures are given. 

1. Introduction 

In our DIRDIF procedures (van den Hark, Prick & 
Beurskens, 1976 and references therein), direct 
methods are applied to the solution of partially known 
structures, usually containing heavy atoms. Difference 
structure factors are calculated, making the usual 
assumption that the observed and calculated structure 
factors have the same phase. These are then 'nor- 
malized', and both amplitudes and phases are refined 
by a weighted tangent procedure. 

Applications of the DIRDIF procedures prompted 
the present study. In particular, when the distribution of 
known atoms is centrosymmetric, calculation of the 
distribution of expectation values for normalized 
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difference-structure factors may indicate whether or not 
the total structure is centrosymmetric. The statistical 
properties of difference structure factors in centro- 
symmetric structures have been described (Woolfson, 
1956; Gould, van den Hark & Beurskens, 1975). 

The discussion here is for space group P1, but is 
applicable to general reflections in other space groups if 
the symmetry enhancement factor e is included. 

2. Notation 

The known part of the structure consists of Np atoms 
whose positions in the unit cell are known. This is the 
partial structure. The remaining N r atoms of unknown 
position, form the rest or difference structure. The total 
structure, then, has N = Np + N r atoms per unit cell. 

For any reflection h, F, Fp and Fr represent the 
structure factors for the total, partial and rest struc- 
tures, respectively. Of these, Fp with phase q~p may be 
calculated, and is usually denoted by Fcalc ; IF I, usually 
denoted by I Fobsl is known experimentally; F r is 
unknown. The relationship 

F = F p +  F r (1) 

cannot be solved, as the phase of F is unknown. 
Normalized structure factors may be approximated 

by: 

E =  ~ Z~ ~. Zjexp(2rcih.rj), (2) 
=l  J = l  

where Z, the atomic number, is used in place of f,  the 
scattering factor. Similar expressions may be written to 
define E o and E~, the sums being over Np and N~ atoms, 
respectively. 

For any reflection h, I EI is known experimentally 
and Ep is calculated using the known atomic positions. 

It is possible to write, analogous to (1) 

E = pEp + rE~, (3) 
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where 

/ p 2 =  ~, Z ~  __ Z~ ,  (4) 
j = l  j = l  

and r is defined analogously to make p2 + r z = 1. For 
equal atom structures, (4) reduces to p2 = Np/N and r z 
= N J N .  The quantities p2 and r z are the fraction of the 
scattering power attributable to the partial and rest 
structures, respectively. In this way, the expectation 
value for the average of the squared normalized 
structure amplitudes will be 1.0 for the total, partial 
and rest structures simultaneously. 

3. The probability density P(0) 

For the situation given in Fig. 1, pEp and I EI are 
known and rE r is considered to be a random variable. 
This implies that the rest structure is considered to be 
independent of the partial structure, or, knowing the 
position of some heavy atoms, or of a molecular 
fragment, does not affect the randomness of the 
position of the remaining atoms. This will generally be 
true, except for some low-order reflections in the case 
where a large molecular fragment is known. Thus we 
can apply the probability density formulae to the rest 
structure. 

The probability density for the phase angle 0 (see 
Fig. 1) has been derived (Sim, 1959) and the result is 
given here in terms of the previously defined quantities: 

P(O) = exp (O cos O)/2M o (O), (7) 

where lo(Q) is a hyperbolic Bessel function of order 
zero and 

Q =  21El IEplp/r 2. (8) 

E 

Fig. 1. Vector diagram in the complex plane of (3) for the case 
plEpl < IEI. The IEI circle represents all possible vectors E. 

(The derivation of these formulae in terms of E values 
is given in Appendix 1.) 

It is useful to express the reflection data in terms of 
the minimum and maximum value that E r can have 
for a given reflection. 

Using (3), we have (see Fig. 1): 

f o r 0 = 0 ;  IE, I = I ( I E I - - p l E p l ) I / r ,  
for 0 = 7r; IE21 = (IE'I + plEol)/r. (9) 

Using these definitions, we now write for (8): 

Q =½( IE212-  [El [2). ( 1 0 )  

In the following section, (7) and (10) are used to cal- 
culate the expectation value for M for a reflection h, 
given I Ell  and I gzl :  

( M > =  [ MP(O)dO, (11) 

where M = / ~ ,  cos fl or IErl 2. Note that (11) is valid 
for general reflections in all non-centrosymmetric space 
groups. 

Corrections 

Equation (11) and Table 1 replace our former 
incorrect results [van den Hark, Prick & Beurskens, 
1976, equations (11) and (20), and Table 1]. 

4. Calculations of (ffz>, (cos if) and (IErl 2> 
We have used (11) for the numerical calculations of 
expectation values for i f ,  cos fl and LErl 2. Use was 
made of the relations: 

rZlErl 2 = pZlEpl2 + IEI 2 -  2p lEpl  IEI cos 0;(12) 

cos f l =  (IEI cos 0 -  p l E ,  I)/rlErl. (13) 

These calculations were done for pairs of I E,  I, I E21 
values. It is useful to express this in terms of IEll and 
I E z I, and the inverse of (9) is given for two cases. If the 
calculated structure amplitude is less than the observed 
structure amplitude we have: 

(plEpl = ½r(IEzl- IE, I), 
plEpl < IEI Ii, IEI=½r(IE21 + IE, I), (14) 

Table 1. Standard deviation (o) of  the phase of  E , f o r  
pairs of  lE,I and IE21 values for  reflections with IFcatcl , 

less than IF oh sl 

IE21 = 0.3 0.6 0.8 1.0 1.2 1.4 1.7 2.0 2-5 3.0 4-0 
LEa[ 
0.3 104 110 110 107 104 99 91 84 76 72 67 
0.6 104 104 102 98 92 83 75 64 59 54 
0.8 104 102 98 92 82 72 60 54 48 
1.0 104 100 94 83 72 58 50 44 
1-2 104 98 87 74 57 48 41 
1.4 104 92 78 58 47 38 
1.7 104 89 63 47 36 
2.0 104 73 50 35 
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otherwise: 
IplEpl =½r(Ig21 + levi), 

plEpl > 
I E I [  IEI=½r(IE21-1E~I) .  

(15) 

Substitution of (14) and (15) into (12) gives the same 
result for IErl2: 

2 1 E r  12 = I E l l  2 + I E 2 I  2 - -  ( I E 2 I  2 - -  I E l l  2) c o s  0,(16) 

but substitution into (13) gives 

plE,  t < IEI; 

COS f l =  [ ( I E 2 1  + I E l l )  c o s  0 - -  ( I E 2 1  - -  IEII)]/21Erl, 
plepJ > Ig; (17) 

cos fl= [(IE21 -- IflJ) cos 0-- (IE2I + IE~I)]/21Erl. 
(18) 

The numerical integrations were carried out using steps 
of 1 ° in 0, and were repeated with steps of ½o; the 
estimated errors of the results are in the order of the 
round-off errors of the data given in the tables. 

The standard deviation of  the phase of E I of a 
reflection h 

If the value o f E  1, with phase tpp, is assumed to be the 
normalized difference-structure factor, then fl (see Fig. 
1) is the phase error (fl = tp r - tpp, where tp~ is the 
correct phase of the difference structure factor). The 
standard deviation is the square root of the variance; 
the variance is calculated by (11) with M = f12. 

The numerical calculations are performed for the 
case p l E r I < I E I using (17) for the calculation of ft. 
The result is tabulated in Table 1. Note that the prob- 
ability density function P(I E I) has a maximum at I EI 
~_ 0.7; for IEII < 0.7, the value of IE21 is often more 
probable than the value of E~, and 101 is expected to be 
greater than 90 °. As a consequence, the table shows 
standard deviations exceeding the random-phases value 
(103.9°). 

Note. For reflections with p l E p I > I E I, the maxi- 
mum absolute value of the phase//is restricted (see van 
den Hark, Prick & Beurskens, 1976); if lEvi is sig- 
nificantly greater than zero, the phase fl will be very 
reliable, and this reflection will get unit weight in our 
procedures. 

The weight of  the phase of E~ 
Sim (1960) introduced the expectation values for 

cos 0 as weighting factors for the calculation of a 
Fourier synthesis. Similarly, we may use expectation 
values for cos fl as weights for a difference Fourier 
synthesis. These weights are calculated by (I 1) with M 
= cos ft. The results for plEpl < IEI are given in Table 
2. The negative values in Table 2 correspond with the 
larger standard deviations in Table 1, the corres- 
ponding reflections should probably be given zero 
weight. 

Table 2. Weights (expectation values for cos fl) for 
pairs of lEvi and IE21 values for reflections with 

IFcatc I less than I f  obsl 

IEz l=  0.3 0.6 0.8 1.0 1.2 1-4 1.7 2.0 2.5 3.0 4.0 
IEII 
0.3 0.0 -0-11 - 0 .  I1 - -0 .08--0 .03 0.03 0-12 0.21 0-31 0.36 0.42 
0.6 0.0 0.0 0-03 0.08 0.15 0.27 0.37 0.49 0.55 0.62 
0.8 0.0 0-03 0.09 0.17 0.30 0.42 0.55 0.62 0-69 
1.0 0-0 0.06 0.15 0.29 0.43 0.59 0.67 0.74 
1.2 0.0 0.09 0.25 0-42 0.61 0.70 0.77 
1.4 0.0 0.18 0.37 0-60 0.71 0.80 
1-7 0.0 0.22 0.55 0-72 0.82 
2.0 0.0 0.44 0.69 0.83 

In the DIRDIF procedure, we use a different 
weighting scheme (W1, see van den Hark, Prick & 
Beurskens, 1976), which is comparable with the 
weighting scheme based upon the results of the tangent 
refinement of the phases. For comparison we give the 
weights W 1 in Table 3. The formula used for the cal- 
culation of W~ is not suitable for reflections with 
negative weights in Table 2; these reflections, however, 
are not used at all in the DIRDIF procedures. 

Expectation value for I Er 12 

The IE rl value for a reflection h has I E~ I and I E21 
as possible minimum and maximum values; the 
expectation value for I Erl 2 may be calculated by (11) 
with M = I E r 12. 

The analytical expression for the estimate 

[ 11 °, 1 
( I E r l 2 > = I E l l  2 + Q  1 Io(Q) 

is obtained from (12) and (9), using 

(cos/9> = ll(Q)/lo(Q) (Sim, 1960). 

The result (19) was also obtained by Srinivasan (1968) 
and by Hull & Irwin (1978). The numerical results are 
given in Table 4. 

The expectation values are used in DIRDIF to check 
the performance of the phase refinement. 

If the expectation value for lEt 12 is calculated for all 
reflections, the average is expected to be nearly equal to 
one. In the DIRDIF procedure, the average value is 
calculated (denoted a priori). For those reflections of 
which the phases are to be refined, the expectation 

Table 3. DIRDIF weights W~ (see text) 

IEzl = 0-3 0.6 0-8 1.0 1-2 1.4 1.7 2.0 2.5 3-0 4-0 
IEll 
0.3 0-0 0-04 0.04 0.02 0.00 0-03 0.24 0.58 0.93 1-00 1-00 
0.6 0.0 0-00 0-00 0.04 0.13 0.40 0.70 0.96 1-00 1.00 
0.8 0-0 0.01 0.04 0.13 0.40 0.71 0.96 1.00 1.00 
1.0 0.0 0.02 0.09 0-35 0.67 0.95 1.00 1.00 
1.2 0.0 0.03 0-25 0.60 0.93 1.00 1.00 
1.4 0.0 0.12 0.47 0-91 0-99 1.00 
1.7 0-0 0.20 0.82 0-98 1.00 
2-0 0.0 0.59 0-96 1.00 
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Table 4. Expectation values for  I Erl 2 

IE21= 0.3 0.6 0.8 1.0 1.2 1.4 1.7 2.0 2.5 3.0 4.0 
IEll 
0.3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.6 0.6 
0.6 0-4 0-5 0.6 0.8 0-9 1.0 1.0 0.9 0.9 0.9 
0.8 0.6 0.8 1.0 1.1 1.2 1.2 1.2 1.2 1.2 
1.0 1.0 1-2 1-4 1.5 1.6 1.6 1.5 1.5 
1.2 1.4 1.7 1.9 2.0 2.0 2.0 2.0 
1.4 2.0 2.3 2.5 2.6 2-5 2.5 
1.7 2-9 3.3 3.5 3.5 3.4 
2-0 4.0 4.6 4-6 4-5 

value is replaced by IE112. The average now is less than 
the a priori average. During the refinement of the 
phases, the I E~I 2 values are replaced by the current 
(more probable) lEvi 2 values, and the average will 
increase and approach the a priori average. A typical 
example is given in Appendix 2. 

5. Distribution function of  IErl 

If the expectation value for lEvi is calculated for all 
reflections, then one can plot the number of reflections 
present in intervals of I Erl ;  this plot should give an 
approximation of the probability density function 
P(IEr l )  for the rest structure. The experimental result 
should more or less match the probability density 
function for either centro-symmetric or non-centro- 
symmetric structures. The expectation values, however, 
tend to cluster about the mean; the exceptional cases, 
which are critical to the distribution, will almost never 
be near expectation values. The expectation value 
therefore is replaced by a weighted distribution of 
possible I E~ I values. 

The procedure used in our present programs is: 
(a) The rest structure is centrosymmetric,  
lEvi must be equal to either I EII or I E zl. For all 

reflections, calculate the probabilities P1 and P2 
(Gould, van den Hark & Beurskens, 1975) and sum P~ 
and P2 in the appropriate ranges of I E~ I. 

(b) The rest structure is non-centrosymmetric;  
IErl may now lie anywhere between IExl and IE21. 

For all reflections calculate relative weights (using 7) 
for a number (say 18) of possible I Erl values in the 
range IEll ,  IE21, and sum the (18) weights of the 
possible I E~ I values in the appropriate ranges of I E~ I. 

Thus, knowing whether or not the structure is 
centrosymmetric,  the experimental distribution of I Erl 
is easily obtained. An example is given in Appendix 2. 

Experiments on a number of test structures have 
shown that when the known part of the structure 
consists of heavy atoms, reflections with relatively large 
lEvi or sin 0/2 are likely to have unreliable I Ell  and 
IE21 values; therefore the best results for the dis- 
tribution function are obtained by imposing L EEI -- 
I E~ I and sin 0/2 limits (e.g. 2.0 and 0.5, respectively). 

6. A statistical test for the presence of  a centre of  
symmetry in the rest structure 

A brief, practical method for testing for the presence of 
a centre is to compare the occurrence of I EI values 
with theoretical populations of ranges of I EI.  For this 
purpose we define a 'centricity fraction', X c, as the 
least-squares solution to the set of condition equations: 

Pexp(LEI) = X c P c ( I E I )  + (1 -- Xc)PA(tEL), (20) 

where Pexp is the experimental distribution and Pc and 
PA are the theoretical centric and acentric dis- 
tributions, respectively. One result (20) is obtained for 
each of the ranges of I EI.  Minimizing the squares of 
the deviations in (20) gives: 

Xc = ~ (Pexp - PA)(Pc - PA)/~ ( P c - -  PA) 2, (21) 

where the summation is over all ranges of I EI.  X c = 1 
for an ideal centric distribution and X c = 0 for an ideal 
acentric distribution. Experimental values for X o 
calculated for structures with centric and acentric dis- 
tributions, come close to these theoretical values. 

The application of this test to difference structure 
factors is slightly more complicated as the true I Erl 
values are not known. In special cases, where the 
known atoms are at special or pseudo-special positions, 
one can apply the test using a large number of 
reflections with zero contribution of the known atoms 
(Ep = 0, IErl = IEII = lEE1). 

In the general case, the result will depend on the 
presumed presence or absence of a centre; this 
dependency, however, is reduced if the application is 
limited to reflections with rather small I Epl values. 

Define X~(E m) as the X c value, obtained by using 
only reflections with I Epl less than a certain maximum 
value Em. The calculations then are repeated for, say, 
E m = 1.0, 0.8, 0.6, 0.4, . . -  . On reducing the 
maximum allowed contribution of the known atoms for 
any reflection, one reduces the range of possible I Erl 
values for that reflection, and thus the dependency on 
the presumed distribution is reduced. 

Experiments clearly show that extrapolation of the 
results X~( Ern ) for E m ~ 0 leads to one solution: 

X c =  lim X~(Em), (22) 
Em~O 

independent of the presumed presence or absence of a 
centre. This being established, we have now accepted a 
fixed number of possible I E rl (in the range I E l I, I E 2 I) 
in our calculations of X~(Em). For centrosymmetric 
rest structures the result of X ~ ( E  m) will usually 
increase, and for non-centrosymmetric rest structures, 
the result will usually decrease, on lowering Em. In all 
cases X~(Em), plotted as a function of E m, is linear 
except at low E m values (where the results are 
unreliable because of the low number of reflections used 
in the calculations). 
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The extrapolation (equation 22), therefore, is done 
by calculating the least-squares line through the experi- 
mental points, X~(Em) ,  using the number of con- 
tributing reflections as a weighting factor. 

Numerical results for 13 test structures are given in 
Appendix 3. It is shown that in most cases X c > 0.6 
for centric, and X c < 0.4 for acentric distributions. In 
the case where X c is close to 0.5, the rest structure 
may indeed have an 'intermediate' (neither centric nor 
acentric) distribution. It is, however, more probable 
that the subtraction of the known part is not done 
accurately; if that is the case, then the errors in I E r I are 
largest for high-order reflections, and improved results 
for X c are obtained by imposing a limit on sin 0/2 for 
contributing reflections. 
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Stat. Adv.) and to Drs J. C. Smit (Math. Inst.) for 
mathematical advice. Part of this work was supported 
by FOMRE with financial aid from the Netherlands 
Organization for the Advancement of Pure Research 
(ZWO). 

We would like to express our thanks to the referee 
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A P P E N D I X  1 
Derivation of the distribution function P(0) 

We will use the following well-known expression for the 
normalized probability density for normalized structure 
factors of non-centrosymmetric structures (Wilson, 
1949; Ramachandran & Srinivasan, 1959): 

P(IEI)  = 21El exp(--IEI2). (23) 

P(I E I) d l E I is the probability that a normalized 
structure factor has an amplitude within the range I EI, 
I EI + d lEI. E is a complex number, or a vector in the 
complex plane; define: 

E = X  + iY, 

R = I E I ;  R 2 = X  2+Y2,  (24) 

X = R c o s 0 ;  Y = R s i n 0 .  

Equation (23) was originally derived (Wilson, 1948) 
from a Gaussian distribution density for the real and 
imaginary components of the structure factors. In our 
notation: 

P ( X )  = it-,/2 exp ( - X 2 ) ,  (25) 
P(Y) = n -1/2 exp (-- y2), 

where the variance of the distribution is ½ to achieve the 
normalization of P(I E I). X and Y are considered to be 
independent random variables. P ( X ,  Y ) d X d Y  is the 
probability that the components of E are in the ranges 
X, X + d X  and Y, Y + dY. 

The vector density is given by the joint probability 
density: 

1 
P ( X ,  Y ) =  P ( X )  P ( Y ) = -  exp [ - ( X  2 + y2)]. (26) 

It 

Transformation to polar coordinates, using (24) and 
dX dY = R dR d0, gives 

1 
P(O, R)  = - R exp (-R2).  (27) 

it 

Integration over all angles gives the distribution of the 
amplitudes: 

P ( R ) =  2R exp (--RZ), 

which is identical to (23). 
For the present problem we consider the a priori  

probability density for the normalized difference- 
structure factor E r = X r + i Y  r. 

Equation (26) reads: 

1 
P ( X r ,  Y r ) = -  e x p [ - (  X2 + y2)]. 

It 

This gives for the vector 

rE r =  r X  r + i r Y  r =  X a + i Y  l, 

1 
P ( X ' , Y 1 ) = - - e x p [ - - ( X I " +  Y~2)]/rZ. (28) 

Itr 2 

Let us consider the calculated vector pEp as a fixed 
number. For simplicity, we may assume that the cal- 
culated phase tpp is zero (this may be achieved for any 
given reflection by an origin shift of the crystal axes); 
the corresponding situation is given in Fig. 2: pEp now 
is a real, positive number. 

°E° x' i / 

Fig. 2. Vector diagram for tpp = 0. 
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The probabil i ty density P ( X ,  Y)  of the vector E = 
pEp + rE r = X + iY, given the value of  pEp, now is 
obtained by substituting X ~ = X - p l Epl and y1 = y 
in the r ight-hand side of  (28). Upon t ransformat ion  to 
polar  coordinates,  as above, one obtains: E2 

El 
P ( R ,  O) = 0.0 

0.3 
R 0.6 

exp[ - - (R  2 + IpEpl 2 -  2RplE1,1 cos O)]/r 2. (29) 0.8 
7[r2 1.0 

Let us now assume that  the amplitude R is known from 1.2 1.4 
experiment.  All possible vectors E will form a circle 1.7 
with radius R. The normal ized probabili ty density P(0) ,  2.0 
given the value of  R, then is obtained by substituting oo 
the observed R value in (27) and renormalizing the 
result: 

P ( 0 ) =  P(R,O) /  f P(R,O)dO.  (30) 

This immediately gives (7), which is identical to the 
result obtained by Sim (1959). 

APPENDIX 2 
An example 

The example compound  C15HI6N202S crystallizes in 
space group P2~2121 with Z -- 4 (Noordik ,  Beurskens,  
Ottenheijm, Herscheid & Tijhuis, 1978). The crystal  
s tructure could not ' routinely '  be solved by direct 
methods.  The position of  the S a tom was found from a 
Pat te rson map  as: x ~ 0 .0 ,  y = 0 .09,  z = 0 .14.  This 
position, however,  is a pseudo-special  position as the 
trial model (S a toms)  includes a mirror  plane at x = 0 
(and a centre of  symmet ry  at  ¼,¼,0). A conventional  
difference Fourier  would have led to a superposit ion of  
the s t ructure  with its enant iomorph.  This mirror  
symmet ry  was dest royed by shifting the a tom about  
0 .15  A (Xne w = 0 .02,  after refinement:  x = 0 .0165) .  

A structure factor  calculation gave an R value of  
0 .56  for 1684 reflections (including all ' zero-observed '  
reflections). 

The refinement of  the scale together with the 
tempera ture  factor  of  the S a tom (Bp) and the overall 
t empera ture  factor  for the remaining a toms (Br) gave:  

Bp = 3.5/~2,  B r = 3.4  A 2. 

With these results, E1 and E 2 values were calculated for 
all 1684 reflections. The distribution of  these reflections 
over several ranges  in I E 11 and I E 21 are given in Table 
5. 

The numbers  in this table add up to 1216, i.e. the 
number  of  reflections having I Fcalc I less than IF  oh s I. 
The remaining 468 reflections are relatively weak  
reflections: only nine of  these have lEvi > 1.0. 

The distribution of  I Erl is given in Fig. 3. The 
'exper imental '  curve is obtained by calculating struc- 

Table 5. Number  o f  reflections in intervals o f  I Ell  
and I E21 f o r  reflections with I Fcatc I less than I Fob s I 

(Example, see Appendix 2.) 

= 0.0-0.3-0.6-0.8-1.0-1 • 2-1-4-1 • 7-2.0-2.5-3-0-4.0-~ 

9 31 33 37 
0 4 22 31 
0 0 1 7 
0 0 0 5 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

33 40 55 
30 29 54 
15 13 33 
14 15 17 
4 4 19 
0 1 7 
0 0 1 
0 0 0 
0 0 0 

44 39 23 2 0 
57 41 29 5 0 
30 37 18 12 0 
23 47 13 12 0 
17 15 26 14 0 
15 19 13 12 0 
9 15 12 19 3 
0 6 3 4 4 
0 2 6 5 1 

ture factors,  using the refined parameters  for all a toms 
but sulphur and normalizing the da ta  in the usual way.  
The a priori  ' expected '  curve, as obtained by the pro- 
cedure described in §5, is smoother ,  but  otherwise close 
to the 'experimental '  curve. 

The results for the centricity test for the rest 
s t ructure are given in Appendix  3; the extrapolat ion 
towards  Ep = 0 clearly shows the rest s t ructure to be 
non-cent rosymmetr ic .  O f  course, there is no problem 
concerning the space group in this example. Neverthe-  

h/ ,.. ~ ~\ (1) 
, ' / /  \ ~ \  (2) 

/ " k  . . . . . .  (3) 

0.6 

i 

0.3 

0.0 1.0 2.0 IE, I 

Fig. 3. Probability density P(IErl). Curve (1) Theoretical curve, 
acentric. Curve (2) Experimental curve using calculated Er'S 
(Appendix 2). Curve (3) Results obtained by the present pro- 
cedure (example, see Appendix 2). 
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less, we will use these statistical methods as a check 
before the application of direct methods to the 
difference structure factors (DIRDIF): if the statistical 
results are not as satisfactory as in this example, one 
should carefully check the 'input structure' or perhaps 
adjust the program parameters to be used. 

The solution of the structure by the DIRDIF pro- 
cedure was continued as follows. There were 110 
reflections having W~ > 0.16 and levi > 1.30 (the 
present program default values), and these reflections 
were used as input to the tangent refinement pro- 
cedure; a total of 330 reflections with lEvi > 0.90 were 
refined in four cycles. 

The a priori average of expectation values for I Erl 2 
was found to be: 

using lEvi 2 for the 330 reflections to be refined: 
using the most probable IErl z value; 

after cycle 1: 
after cycle 2: 
after cycle 3: 
after cycle 4: 

0.973 
0.872 

0.897 
0.920 
0.948 
0.965 

The weighted difference-structure factors were used 
as input to a Fourier program, resulting in a map of 
which the top 20 peaks corresponded to the 19 non- 
hydrogen atoms of the molecule (including the S atom!) 
and one false position. 

The known part of the structure often will be found 
in the Fourier map; in the present example the fourth 
highest peak corresponds to the input S atom position. 

A P P E N D I X  3 
Numerical results for the centricity fraction X c 

The centricity fraction X c, as defined in §6 and cal- 
culated according to the procedures described before, 
has been determined for 13 test structures. In all cases 
an extrapolation to zero contribution of the known part 
of the structure has been applied. 

In the present procedure, special reflections, which 
have or may have a centric distribution, are skipped. 
Instead of the true, but unknown I Erl value, we accept 
three possible values with different weights, namely: 
IErl = IEll with w = :~; IErl = ½(IEll + IE21) with w 
-- ½; IE, I = IE=I with W = :~. These weights are summed 
in the appropriate ranges of I E r I. After completing this 
summation, the resulting distribution is normalized. 
Two thresholds have been built in. First a sin 0/2 limit 
is used to reduce the influence of possible errors in the 
parameters of the known atoms; all calculations are 
repeated for the threshold values 0.50, 0.40, 0.32 and 
0.25 A -1. The second criterion is the magnitude of the 
calculated structure factor of the reflection. For pro- 
gramming convenience we replace the threshold on 
IEol by a threshold on plEol/r,  which is given by (14) 
and (15) as ½(IE21 + IEll). The threshold values 
plE,nl/r are: 8.0, 2-0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 
0.4. For each of these values X~ is calculated. Nine X~ 
values enter in a weighted least-squares procedure (the 
threshold 8.0 is not used). The weights assigned to the 
X~ values are proportional to the number of reflections 
contributing to an Xb value. We have observed that at 

Table 6. Calculated X c values of  13 test structures for various sin 0/2 limits 

Values between parentheses should be neglected because the total number of reflections contributing to the calculation of X c is too small 
(<50). 

Known Unknown Theoretical 
Entry atoms atoms Sin 0/2 < ~ 0.50 0.40 0.32 0.25 Xc* 

(1) Sb C9N21N2S 4 0.321 0-041 -0 .587  -0-559 -0 .425  0 
(2) Zn C6HI2OsN 2 -0 .097  -0 .311 -0 .012  0.126 (0.728) 0 
(3) CI CgHI4N304 -0-066 0-043 -0-096 -0-062 0-179 0 
(4) S C tsHtrNzOz 0.497 0.221 0.084 0-042 0.081 0 
(5) 2C1 C27H45NO 0.671 0.734 0.602 0.513 0-204 0 
(6) Au + 2Br C16Hz3NSz 0.885 1.119 1-509 1.905 2.206 1 
(7) 4I (AsC4H9NSz)2 1.184 1.505 1.614 1-931 1.963 1 
(8) CI C 5Hx3N204 1.989 2.179 2-037 1.943 2-083 1 
(9) Ni + 2S C15HvN 4 0.785 0.574 0.644 0.750 (--0-019) 1 
(9) Ni C I~HTN4S 2 1.031 1.109 1.387 1.637 2.035 1 

(10) 2Br Cll H1203 0.535 0.606 0.584 0.778 0.954 1 
(11) Au + 2Br CI~HzsNS z 0.970 1.087 1.094 1.271 1.361 1 
(12) Cu + I Ci2Hz0N2S3 0-353 0.195 0.133 0.098 0.518 1 
(13) S C I~H 16N 202 0.923 1.003 1.107 1.093 1.001 1 

References: (1) Cras & Willemse (1978). (2) van der Helm, Nicholas & Fisher (1970). (3) Subramanian & Hunt (1970). (4) Noordik, 
Beurskens, Ottenheijm, Herscheid & Tijhuis (1978). (5) Mootz & Berking (1970). (6) Wijnhoven, Bosman & Willemse (1979). (7) 
Beurskens, Beurskens, Noordik, Willemse & Cras (1979). (8) Prick & Beurskens (1979). (9) M anoharan & Noordik (1979). (10) Noordik 
& Groen (1978). (11) Bosman, Wijnhoven & Willemse (1979). (12) van de Leemput, Willemse, Cras & Groen (1979). (13) Noordik, 
Herscheid, Tijhuis & Ottenheijm (1977). 

* Ideal X c value for centrosymmetric structure: I; ideal X c value for non-centrosymmetric structure: 0. 
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low I E,,,I values, the results for Xb(E m) become 
unreliable. 

The calculated X c values for 13 test structures 
applying four sin 0/2 thresholds, are collected in Table 
6. This table clearly shows the tendency for centro- 
symmetric structures to have an X c value near 1.0 and 
for non-centrosymmetric structures to have a value 
approaching 0. Upon decreasing the dependency on the 
'input' structure, a better approximation for these ideal 
X c values is obtained, especially for structures where at 
first sight a strong preference for 'heavy atom' 
centricity is clearly seen. Upon decreasing the sin 0/2 
limit, the results sometimes become less reliable 
because of the small number Of contributing reflections; 
on the other hand, this sometimes will improve the 
results (see Table 6, entry 5), as errors in thermal 
parameters become less important. 

One example (Table 6, entry 12) does not give the 
expected X c value. To explain this, we have calculated 
the distribution for the I EI values of the rest structure, 
using the phases calculated after the refinement of the 
structure; it was found that this distribution resembles 
more the acentric than the centric curve. From this one 
example it is concluded that the results for X c are not 
definite proof for the presence or absence of a center of 
symmetry. 
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Abstract 

It is proposed that a weighted coordination number, 
Z*, be used as a measure of the number of neighbours 
of an atom in a crystal. Coordinating atoms contribute 
faces to the Voronoi polyhedron around a central atom 
and their contributions are weighted in proportion to the 
solid angle subtended by that face at the centre. The 
advantages of this definition over other proposals are 
pointed out. 

0567-7394/79/050772-04501.00 

The concept of coordination number (CN) of an atom 
or ion in a crystal is very widely used and has proved 
very fruitful in crystal chemistry. The CN of atoms in 
crystals has become accepted as a basic parameter 
describing a structure, and many atomic properties 
such as atomic (or ionic) radius are considered to 
depend upon it directly. It is nevertheless true that it is 
hard to find an unambiguous definition of CN that is 
not in conflict with intuition in many instances. In this 
paper a rigorous yet logical and useful definition is 
proposed. 
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